Get Complete Project Material File(s) Now »
Acaricide
For centuries , tick control has been effected using chemical acaricides. Dipping in arsenical compounds was used against R.*microplus and R.*annulatus and worked well to eradicate these tick species from the USA in early 1900s. But resistance subsequently developed in the ticks. Organochlorine insecticides such as DDT and Benezenehexachloride, introduced later, eliminate ticks by preventing acetylcholine binding to its receptor, hence overRstimulating the sodium channels in neurons. However, resistance to organochlorine insecticides also developed in*R.*appendiculatus,* R.* microplus* and* R.* decoloratus in Australia and Africa. Furthermore, the residues persisted in the environment with potential but as yet unquantified implications for wildlife populations and human health. As a result of these factors their use has been discontinued. Organochlorines were replaced by organophosphates and organocarbamates, mainly to control Rhipicephalus*(Boophilus) ticks. They function by inhibiting acetylcholinesterase thereby inducing continuous nerve firing. Unlike organochlorines, they do not persist in the environment, however, their toxicity to vertebrates, combined with emerging resistance in ticks has led to a decline in use. Amitraz, a member of the formamidine chemical family, is used to control a wide range of invertebrates and organophosphateRresistant ticks, including R.* microplus,* R.* decoloratus,*R.*appendiculatus*and*R.*evertsi on cattle and other domestic animals. Ticks on treated animals are usually killed either prior to attachment or within 24 hours of attachment. Pyrethroids are synthetic compounds that, like most insecticides, affect the nervous system of the invertebrate. They are costly but effective. Benzoyle phenyl ureas such as Fluazuron, inhibit chitin formation in B.*microplus, which in turn leads to a decline in the fecundity and fertility of engorged female ticks. Due to its lipophilic property Fluazuron is excreted in milk, transmitting chemical protection to the calves. However, the meat of such cattle cannot be consumed until the residues of the chemical have waned from the animal’s fat tissues. Spinosad confers about 90% control of R.* microplus. It functions by binding to the nicotinic acetylcholine receptors on the postsynaptic cell membrane, and is effective against all developmental stages of the tick.
Enzymes:*proteases,*nucleases,*esterases,*lipases,* chitinases***
Enzymes including metalloproteases, nucleotidase/apyrase, carboxypeptidase, chitinase, serine proteases, carboxyl esterase, endonucleases and phospholipase are represented by 80 proteins, 37 of which are metalloproteases, as identified by conserved domain matches to the Zn<dependent metalloproteases secreted by arthropod salivary glands (CDD: cd04272, Superfamily: cl00064) (Francischetti et al., 2003). Most of these contain the Pfam reprolysin motif (PF01421). Metalloproteases have been found to be expressed abundantly in other hard ticks (Chmelař et al., 2008; Nakajima et al., 2005; Ribeiro et al., 2006; Valenzuela et al., 2002a) as well as soft ticks (Mans et al., 2008a) and are thought to be involved in anti<blood clotting activity (Valenzuela et al., 2002a).
CHAPTER  1.  LITERATURE  REVIEW
1.1  TICK  BIOLOGY  AND  MEDICAL  AND  ECONOMIC  IMPACT
1.2 RHIPICEPHALUS  APPENDICULATUS  AND  ITS  ROLE  IN  CAUSING  EAST  COAST  FEVER  IN  CATTLE
1.3  TICK  CONTROL 1.4  TICK  SALIVARY  GLAND  FUNCTION  AND  MODULATION  OF  HOST  PATHWAYS
CHAPTER  2.  MATERIALS  AND  METHODS
2.1  PREPARATION  OF  TICK  MATERIAL
2.2  EST  LIBRARY  CONSTRUCTION
2.3  CLUSTERING  AND  ANNOTATION 2.4  BAC  LIBRARY  PREPARATION
2.5  ITM  STABILATE  SEQUENCING  AND  ASSEMBLY
2.6  QUANTIFICATION  OF  RUKA  COPY  NUMBER  IN  R. APPENDICULATUS  GENOMIC  DNA  USING   QUANTITATIVE  REAL  TIME  PCR  (RTUPCR)%
2.7  STRUCTURE  PREDICTION
2.8  IDENTIFICATION  OF  GLYCINEURICH  PROTEINS
2.9  ASSESSMENT  OF  NONUCODING  POTENTIAL  OF  A  TRANSCRIBED  SEQUENCE  USING  PORTRAIT
CHAPTER  3.  ANALYSIS  OF  RHIPICEPHALUS APPENDICULATUS  SALIVARY  GLAND  EXPRESSED   SEQUENCE  TAG  DATABASES (RAGI):  ADDITIONAL  DATA  AND  NOVEL  INSIGHTS
3.1  OVERVIEW
3.2  SUMMARY  OF  GENE  FAMILIES  WITHIN  RAGI
3.3  HOMOLOGUES  OF  TICK  GENES  ENCODING  PREVIOUSLY  IDENTIFIED  VACCINE  CANDIDATES
3.4  UNANNOTATED  TRANSCRIPTS  IN  RAGI
3.5  GLYCINE  RICH  PROTEINS
3.6  CONCLUSION
CHAPTER  4.  NONUCODING  RNA  IN  TRANSCRIBED  SEQUENCES
4.1  BACKGROUND
4.2  EVIDENCE  OF  NONUCODING  RNA  IN  RAGI
4.3  CONCLUSION
CHAPTER  5.  COMPARATIVE  ANALYSIS  OF  GENE  INDICES  GENERATED  FROM  DIFFERENT   IXODID  TICK  SPECIES
5.1  RESULTS
5.2  SEQUENCES  CONSERVED  IN  TICKS
5.3 R. APPENDICULATUSUSPECIFIC  TRANSCRIPTS
5.4  CONCLUSIONS
CHAPTER  6.  ANALYSIS  OF  THE  NUCLEAR  GENOME  OF  R. APPENDICULATUS
6.1  INSIGHTS  INTO  THE  ORGANIZATION  OF  THE  R. APPENDICULATUS GENOME  THROUGH  ANALYSIS   OF  SAMPLE  SEQUENCES
6.2  TRANSPOSABLE  ELEMENTULIKE  SEQUENCES  IN  R. APPENDICULATUS
6.3  CONCLUSION
CHAPTER  7.  CONCLUDING  REMARKS
7.1  FUTURE  AVENUES  FOR  INVESTIGATION